The 11th Seoul Symposium on Bone Health
& the 35th Spring Scientific Congress of the Korean Society for Bone and Mineral Research

Noriaki Ono

Curriculum Vitae

Associate Professor University of Texas at Houston

Educational Background & Professional Experience

2021-Present	Associate Professor, University of Texas Health Science Center
	at Houston School of Dentistry
2020-2021	Associate Professor, University of Michigan School of Dentistry
2014-2020	Assistant Professor, University of Michigan School of Dentistry
2012-2014	Instructor, Massachusetts General Hospital
2009-2012	Research Fellow, Massachusetts General Hospital
2007-2009	Clinical Fellow, Tokyo Medical and Dental University
2007	Ph.D., Tokyo Medical and Dental University
2003	D.D.S., Tokyo Medical and Dental University

Research Interests

- · Skeletal stem cells
- Bone development
- Bone regeneration

My research is dedicated to studying the identity of skeletal stem cell populations that reside various compartments of bone and cartilage, and the function of these cells in development, diseases and regeneration of bone and cartilage. My specific expertise is mouse genetic lineage-tracing experiments to investigate in vivo cell fates and functions of skeletal stem cell populations.

Publications

- 1. Matsushita Y, Liu J, Chu AKY, Tsutsumi-Arai C, Nagata M, Arai Y, Ono W, Yamamoto K, Saunders TL, Welch JD, Ono N (2023). Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis. Nature Communications. Accepted.
- 2. Matsushita Y, Chu AKY, Nagata M, Wong SY, Welch JD, Ono W, Ono N (2022). The fate of early perichondrial cells in developing bones. Nature Communications. 13(1):7319.
- 3. Hallett SA, Matsushita Y, Ono W, Sakagami N, Mizuhashi K, Tokavanich N, Nagata M, Zhou A, Hirai T, Kronenberg HM, Ono N (2021). Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. Elife. 10:e64513.
- 4. Matsushita Y, Nagata M, Kozloff KM, Welch JD, Mizuhashi K, Tokavanich N, Hallett SA, Link DC, Nagasawa T, Ono W, Ono N (2020). A Wnt-mediated conversion of the bone marrow stromal cell identity supports skeletal regeneration. Nature Communications. 16;11(1):332.
- 5. Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018). Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 563(7730):254-258.